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Abstract
Tensor operators in graded representations of Z2-graded Hopf algebras are
defined and their elementary properties are derived. The Wigner–Eckart
theorem for irreducible tensor operators for Uq[osp(1 | 2)] is proven. Examples
of tensor operators in the irreducible representation space of Hopf algebra
Uq[osp(1 | 2)] are considered. The reduced matrix elements for the irreducible
tensor operators are calculated. A construction of some elements of the centre
of Uq[osp(1 | 2)] is given.

PACS numbers: 02.20.Uw, 03.65.Fd

1. Introduction

This paper is a continuation of the study of the properties of irreducible representations (the
so-called Racah–Wigner calculus) of the quantum superalgebra Uq[osp(1 | 2)]. In previous
papers [1–3] it was shown that it is possible to construct Racah–Wigner calculus for this
quantum superalgebra in a completely similar way as in the classical Lie algebra su(2) [4] and
the quantum algebra Uq(su(2)) [5–7]. It is quite remarkable that all topics that are relevant
for the Racah–Wigner calculus for su(2) or Uq(su(2)) have their direct super-analogue in the
representation theory quantum superalgebra Uq[osp(1 | 2)].

An important part of the classical Racah–Wigner calculus is the definition and properties
of tensor operators in the representation spaces. The concept of tensor operators is very
important in applications of symmetry techniques (Lie groups and algebras) in theoretical
physics. The irreducible tensor operators for the Lie group of space rotations were first
introduced by Wigner [8]. An equivalent definition of tensor operators for the corresponding
Lie algebra was given by Racah [9]. These tensor operators play a very important role in the
theory of angular momentum in quantum physics.
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The importance of tensor operators in the representation theory of the Lie groups and
algebras leads us naturally to investigate the concept of tensor operators for quantum groups
and algebras as well as for the quantum superalgebras. The classical Wigner–Racah definition
of the irreducible tensor operator has been extended to the quantum Lie algebras in [6, 7, 10]
and the Wigner–Eckart theorem has been proved in a similar way as in classical undeformed
symmetry structures. In [11, 12] a new, more general definition of tensor operators for
arbitrary Hopf algebra has been proposed. According to these definitions tensor operators
are homomorphisms of some Hopf algebra representations. The new general definitions,
on one hand, are equivalent to the classical Wigner–Racah definitions if the corresponding
Hopf algebra is su(2) or Uq(su(2)), on the other hand they allow us to deduce easier general
properties of tensor operators from basic properties of Hopf algebra representations. The
Wigner–Eckart theorem for irreducible tensor operators for Hopf algebras has been proved in
paper [13], where a more general version of the definition from paper [12] has been used.

In this paper we define tensor operators for Z2-graded Hopf algebras in a similar way
as in papers [12, 13]. We study the basic properties of the linear operators acting in the
graded irreducible representation spaces of the quantum superalgebra Uq[osp(1 | 2)]. In
particular we prove the Schur lemma for Uq[osp(1 | 2)]. Next we formulate and prove
the Wigner–Eckart theorem for irreducible tensor operators of the quantum superalgebra
Uq[osp(1 | 2)]. The proof is based on the properties of Uq[osp(1 | 2)] representations, in
particular conclusions from the Schur lemma play an important role in it. It is remarkable that
the Wigner–Eckart theorem for Uq[osp(1 | 2)] has exactly the same form as in the classical case
su(2) or Uq(su(2)) i.e. the matrix elements of components of the irreducible tensor operator
for Uq[osp(1 | 2)] are proportional to Clebsch–Gordan coefficients and the proportionality
coefficient (reduced matrix element) has the same properties as that in the case of su(2) or
Uq(su(2)). Using properties of representations of graded Hopf algebras we construct two
classes of tensor operators for Uq[osp(1 | 2)]. In the first class tensor operators act in the
adjoint and regular representations of Uq[osp(1 | 2)]. The second class of tensor operators
consists of the irreducible tensor operators acting in the irreducible representation spaces of
Uq[osp(1 | 2)]. As an application of the Wigner–Eckart theorem we calculate the reduced
matrix elements for the irreducible tensor operators. Finally we give a method of constructing
the elements of the centre of Uq[osp(1 | 2)], based on the properties of the tensor product of
irreducible representations.

This paper has the following structure. In section 2 we give a review of basic definitions
and properties of graded representations, we define tensor operators for Z2-graded Hopf algebra
and we give some examples of tensor operators. In section 3 we review basic properties
of grade star representations of Uq[osp(1 | 2)]. Using these properties we prove the Schur
lemma, next we formulate and prove the Wigner–Eckart theorem for the quantum superalgebra
Uq[osp(1 | 2)]. In section 4 we consider examples of tensor operators for Uq[osp(1 | 2)],
calculate the reduced matrix element for the irreducible ones and give a construction of some
elements of the centre of Uq[osp(1 | 2)].

2. Tensor operators for Z2-graded Hopf algebras

We begin by recalling the definition of the Z2-graded Hopf algebra.

Definition 1. A Z2-graded Hopf algebra is a vector space A over complex field C such that
A = ⊕α∈Z2Aα . The elements a of Aα are said to be homogeneous of degree α (α = 0 ↔ even,
α = 1 ↔ odd) and their degree will be denoted deg(a) ≡ |a| ∈ Z2. We assume that the
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unit 1 of a graded algebra belongs to A0. In the following all Greek indices will belong to Z2.
Further we have in A

(1) an associative multiplication, m : A ⊗ A → A,m(Aα ⊗ Aβ) ⊂ Aα+β,m(a ⊗ b) =
ab, a, b ∈ A,

m ◦ (idA ⊗ m) = m ◦ (m ⊗ idA)

(2) a coassociative comultiplication, � : A → A ⊗ A, |a ⊗ b| = |a| + |b|,� : Aα ⊂
⊕β+γ=αAβ ⊗ Aγ ,�(a) = ∑

i a
(1)
i ⊗ b

(2)
i , a ∈ A,

(idA ⊗ �) ◦ � = (� ⊗ idA) ◦ �

(3) a counit, ε : A → C,

(idA ⊗ ε) ◦ � = (ε ⊗ idA) ◦ � = idA

and we have ε(A1) = 0
(4) an antipode S : A → A, S(Aα) ⊂ Aα

m ◦ (idA ⊗ S) ◦ � = m ◦ (S ⊗ idA) ◦ � = i ◦ ε

such that the mappings � and ε are algebra homomorphisms Z2-graded algebras and in
particular the multiplication in A ⊗ A is given by

(a ⊗ b)(c ⊗ d) = (−1)|c||b|(ac ⊗ bd).

One can show that the antipode S is always an anti-homomorphism of the algebra and of
the coalgebra,

S(ab) = (−1)|a||b|S(a)S(b), (S ⊗ S) ◦ � = τ ◦ � ◦ S.

where the map τ : A ⊗ A → A ⊗ A is given by

τ(a ⊗ b) = (−1)|a||b|b ⊗ a.

We will need later on the following identity∑
i,j

(
a

(1)
i

)(1)

j
⊗ S

(
a

(1)
i

)(2)

j
a

(2)
i = a ⊗ 1 (2.1)

where a ∈ A. This identity follows from coassociativity of the coproduct �.
The simplest example of Z2-graded Hopf algebra is the quantum superalgebra

Uq[osp(1 | 2)]. The quantum superalgebra Uq[osp(1 | 2)] is Z2-graded algebra with unit 1
and generated by three elements: H (deg(H) = 0) and v± (deg(v±) = 1) with the following
(anti)commutation relations

[H, v±] = ±1

2
v±; [v+, v−]+ = − sh(ηH)

sh(2η)
(2.2)

where the parameter η is real and we set q = e− η

2 . The following formulae for coproduct �,
antipode S and the counit ε define on Uq[osp(1 | 2)] the structure of Z2-graded Hopf algebra

�(H) = H ⊗ 1 + 1 ⊗ H ; �(v±) = v± ⊗ qH + q−H ⊗ v±,

ε(H) = ε(v±) = 0, ε(1) = 1

and the antipode is defined by

S(H) = −H ; S(v±) = −q± 1
2 v±.

As of Z2-graded Hopf algebra Uq[osp(1 | 2)] has the form Uq[osp(1 | 2)] = ⊕α∈Z2

(Uq[osp(1 | 2)])α .
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For any Z2-graded Hopf algebra A, one can define the adjoint action ad of A on itself in
the following way

ada(b) =
∑

i

(−1)|a
(2)
i ||b|a(1)

i bS
(
a

(2)
i

)
for any a, b ∈ A. Using this action we define the subset of invariant elements of A

Aε = {b ∈ A : ada(b) = ε(a)b,∀a ∈ A}.
We will need later on the following proposition which characterizes the invariant elements of
Z2-graded Hopf algebra A.

Proposition 1. An element b ∈ A is ad-invariant if and only if it belongs to the centre Z(A)

of A i.e. we have for any a ∈ A

ada(b) =
∑

i

(−1)|a
(2)
i ||b|(a(1)

i

)
bS

(
a

(2)
i

) = ε(a)b ⇔ ab = (−1)|a||b|ba

or equivalently we have Aε = Z(A).

Proof. First we prove (⇒). If b ∈ Z(A) then we have for any a ∈ A

ada(b) =
∑

i

(−1)|a
(2)
i ||b|(a(1)

i

)
bS

(
a

(2)
i

) =
∑

i

(
a

(1)
i

)(
S
(
a

(2)
i

))
b = ε(a)b

The proof of the converse (⇐) is more difficult. Now we assume that b ∈ Aε i.e. for any
a ∈ A

ada(b) =
∑

i

(−1)|a
(2)
i ||b|(a(1)

i

)
bS

(
a

(2)
i

) = ε(a)f (2.3)

and we have to prove that from this it follows

ba = (−1)|a||b|ab (2.4)

First let us observe that from ε(A1) = 0 we have for any a ∈ A

ε(a) = (−1)k|a|ε(a) (2.5)

where k is an arbitrary number. We have also from definition 1 for any i, j appearing in the
coproduct �(a)∣∣a(1)

i

∣∣ = ∣∣(a(1)
i

)(1)

j

∣∣ +
∣∣(a(1)

i

)
(2)
j

∣∣. (2.6)

We start from the LHS of equation (2.4)

ba =
∑

i

b
[
ε
(
a

(1)
i

)
a

(2)
i

] =
∑

i

(−1)|a
(1)
i ||b|ε

(
a

(1)
i

)
ba

(2)
i

where we have used equation (2.5). Now we use equation (2.3) for a = a
(1)
i and get

ba =
∑
ij

{
(−1)|a

(1)
i ||b|(−1)|(a

(1)
i )

(2)
j )||b|[(a(1)

i

)(1)

j

]
b
[
S
(
a

(1)
i

)(2)

j

]}
a

(2)
i

=
∑
ij

(−1)|(a
(1)
i )

(1)
j )||b|[(a(1)

i

)(1)

j

]
b
[
S
(
a

(1)
i

)(2)

j
a

(2)
i

]
.

In the last equation we have used equation (2.6). Now we will prove that∑
ij

(−1)|(a
(1)
i )

(1)
j )||b|[(a(1)

i

)(1)

j

]
b
[
S
(
a

(1)
i

)(2)

j
a

(2)
i

] = (−1)|a||b|ab
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From the coassociativity condition for the coproduct � we get∑
i,j

b ⊗ (
a

(1)
i

)(1)

j
⊗ (

a
(1)
i

)(2)

j
⊗ a

(2)
i =

∑
i,j

b ⊗ a
(1)
i ⊗ (

a
(2)
i

)(1)

j
⊗ (

a
(2)
i

)(2)

j

Acting on both sides of the above equation by (m ◦ (m ⊗ id) ◦ (m ⊗ id ⊗ id)) ◦ (τ ⊗ S ⊗ id)

we get∑
i,j

(−1)|(a
(1)
i )

(1)
j )||b|(a(1)

i

)(1)

j
bS

(
a

(1)
i

)(2)

j
a

(2)
i = (−1)|a||b| ∑

i,j

(−1)|a
(2)
i ||b|a(1)

i bS
(
a

(2)
i

)(1)

j

(
a

(2)
i

)(2)

j

= (−1)|a||b| ∑
i

(−1)|a
(2)
i ||b|a(1)

i bε
(
a

(2)
i

) = (−1)|a||b|ab.

�

In the following we will consider the representations of Z2-graded Hopf algebra
Uq[osp(1 | 2)] in the Z2-graded linear spaces therefore we recall here some basic properties of
the graded representations [17]. A vector space V over complex field C is called a Z2-graded
linear space or simply graded space if V = ⊕α∈Z2Vα . The elements v of Vα are said to be
homogeneous of degree α (α = 0 ↔ even, α = 1 ↔ odd) and their degree will be denoted
similarly as in the case of graded algebras deg(v) ≡ |v| ∈ Z2. Consider now two graded
vector spaces V,W and a linear mapping f ∈ Hom(V ,W). The mapping f is said to be
homogeneous of degree β ∈ Z2 if

f (Vα) ⊂ Wα+β.

where α ∈ Z2. So we get a gradation in linear space Hom(V ,W)

Hom(V ,W)β = {f ∈ Hom(V ,W) : f (Vα) ⊂ Wα+β}.
and

Hom(V ,W) = Hom(V ,W)0 ⊕ Hom(V ,W)1

For a given Z2-graded Hopf algebra A, a graded representation of A is defined in the
following way:

Definition 2. A graded representation of Z2-graded Hopf algebra A in Z2-graded linear space
V is an even homomorphism ρ : A → Hom(V , V ), i.e. ρ ∈ Hom(A, Hom(V , V )). The
pair (V , ρ) is called a graded representation of Hopf algebra A. The representation (V , ρ) is
irreducible if there is no proper subspace V ′ ⊂ V which is invariant under action of the Hopf
algebra A via map ρ.

Let us recall some examples of Z2-graded Hopf algebra representations.

Example 1. A Z2-graded Hopf algebra A is itself a graded representation space for the adjoint
action ρ(a) ≡ ada

ada(b) =
∑

i

(−1)|a
(2)
i ||b|a(1)

i bS
(
a

(2)
i

)
for a, b ∈ A. This representation is denoted by (A, ad) ≡ Aad .

Example 2. A Z2-graded Hopf algebra A is also a graded representation space for a left regular
action L of A

L(a) · b = m(a ⊗ b) = ab

for any a, b ∈ A. A left regular representation is denoted by (A,L) ≡ AL.
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Example 3. Let (V , π), and (W, ρ) be graded modules of Z2-graded Hopf algebra A. The
linear space Hom(V ,W) is a graded A-module (Hom(V ,W), δ) with the action of A on
f ∈ Hom(V ,W) defined as follows:

δ(a)(f ) =
∑

i

(−1)|a
(2)
i ||f |ρ

(
a

(1)
i

) ◦ f ◦ π
(
S
(
a

(2)
i

))
.

Example 4. The tensor product V ⊗W of two graded representation spaces of representations
(V , π), and (W, ρ) is a graded representation space where the action δ⊗ of A is the following:

δ⊗(a)(v ⊗ w) =
∑

i

(−1)|a
(2)
i ||v|π

(
a

(1)
i

)
v ⊗ ρ

(
S
(
a

(2)
i

))
w.

for any v ∈ V,w ∈ W and where |v ⊗ w| = |v| + |w|. This yields the representation
(W ⊗ V, (ρ ⊗ π) ◦ �).

The last example is the following:

Example 5. The counit map ε of A equips any graded vector space V with a trivial
representation ρ = ε structure where

av = ε(a)v

where v ∈ V and a ∈ A. In particular any one-dimensional representation (which is not a
zero representation) is equivalent to a trivial representation.

The concept of trivial action of the Z2-graded Hopf algebra A on vectors of representation
space can be applied to any representation of A.

Definition 3. For any representation (V , ρ) of Hopf algebra A we define the subspace of
invariant vectors

Vε = {v ∈ V : ρ(a) · v = ε(a)v,∀a ∈ A}.

The next important mathematical tool which we are going to use later on is a graded
intertwiner of representations so let us recall its definition.

Definition 4. Let (V , ρ) and (W, σ) be representations of the Z2-graded Hopf algebra A. A
linear map f ∈ Hom(V ,W) is a graded intertwiner of representations (V , π) and (W, ρ) if

f ◦ π(a) = (−1)|a||f |ρ(a) ◦ f.

for any a ∈ A. The space of the graded intertwiners will be denoted IA(V,W). An
even intertwiner is a homomorphism of representations so the subspace (IA(V,W))0 ≡
HomA(V,W) is a space of homomorphisms.

We give two examples of homomorphisms of representations of A, which will be important
in the following.

Example 6. The Z2-graded Hopf algebra A with the adjoint action ada, a ∈ A form the
adjoint representation (A, ada). On the other hand we have the representation (Hom(V , V ), δ)

of A from example 3. The representation ρ : A → Hom(V , V ) from definition 2 is a
homomorphism of the Hopf algebra representations.
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Example 7. A left regular action L given in example 2 is a homomorphism of representations
Aad and (Hom(AL,AL), δ), i.e. L ∈ HomA(Aad, Hom(AL,AL)). In fact we have for any
a, b ∈ A

L(ada(b)) =
∑

i

(−1)|a
(2)
i ||b|L

(
a

(1)
i bS

(
a

(2)
i

)) =
∑

i

(−1)|a
(2)
i ||b|L

(
a

(1)
i

)
L

(
b)L

(
S(a

(2)
i

))
or equivalently

L ◦ ada = δ(a) ◦ L.

where |L| = 0 because L is a representation.

Now we are in a position to define tensor operators for Z2-graded Hopf algebras. Following
the idea of the definition of tensor operators for Hopf algebras given in [12] we define tensor
operators for Z2-graded Hopf algebras in the following way:

Definition 5. Let (V , π), (W, ρ) and (U, σ ) be graded representations of the Z2-graded Hopf
algebra A and let T ∈ Hom(V , Hom(W,U)) then T is a tensor operator of type V in W

if T ∈ IA(V, Hom(W,U)). In other words tensor operator T is a graded intertwiner of
representations (V , π) and (Hom(W,U), δ) and it satisfies

T ◦ π(a) = (−1)|a||T|δ(a) ◦ T. (2.7)

Let vectors {el}l∈I⊂N be a basis of the representation space V , then the linear operators
T(el) ≡ Tl ∈ Hom(W,U) will be called the components of the tensor operator T. If
dim V < ∞ then the components Tl of T satisfy

π(a)jlTj = (−1)|a||T| ∑
i

(−1)|a
(2)
i ||Tl |σ

(
a

(1)
i

) ◦ Tl ◦ ρ
(
S
(
a

(2)
i

))
(2.8)

where π(a)jl is a matrix of π(a). If all the representations (V , π), (W, ρ) and (U, σ ) are
irreducible then the tensor operator T is called irreducible.

Let us write the defining equation (2.8) for the components Tl of T when A =
Uq[osp(1 | 2)] and a = v±,H

π(v+)jlTj = (−1)|v+||T|(σ (v+) ◦ Tl ◦ ρ(q−H ) − (−1)|v+||Tl |q
1
2 σ(q−H ) ◦ Tl ◦ ρ(v+)) (2.9)

π(v−)jlTj = (−1)|v−||T|(σ (v−) ◦ Tl ◦ ρ(q−H ) − (−1)|v−||Tl |q− 1
2 σ(q−H ) ◦ Tl ◦ ρ(v−)) (2.10)

π(H)jlTj = σ(H) ◦ Tl − Tl ◦ ρ(H) (2.11)

Thus the above definition of tensor operator, although it seems to be abstract in the case
of the simplest quantum superalgebra Uq[osp(1 | 2)] which is a superanalogue of the quantum
algebra Uq[su(2))], gives very similar defining formulae for generating elements as in the
case of Uq[su(2))] [6, 7, 10].

Let us give some important examples of tensor operators.

Example 8. Example 6 shows that the representation ρ from definition 2 is itself a tensor
operator because ρ ∈ HomA(A, Hom(W ⊗ W)).

Example 9. The left regular action L of A on itself as defined in example 2 is a tensor operator
because L ∈ HomA(Aad, Hom(AL,AL)) (example 7).
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Before formulating a lemma which will be used later on we introduce useful notation. If
f ∈ Hom(V ,W) where (V , π) and (W, ρ) are representations of the Hopf algebra a, then we
define

πf (a) ≡ f ◦ π(a) : V → W (2.12)

and the linear mapping mπ
ρ : Hom(W) ⊗ Hom(V ,W) → Hom(V ,W) is defined in the

following way

mπ
ρ (ρ(a) ⊗ πf (b)) = (−1)|a||f |((mπ

ρ ◦ (ρ ⊗ πf

)) · (a ⊗ b) ≡ ρ(a) ◦ πf (b). (2.13)

Lemma 1. Assume that

(1) (V , π),W, ρ), (U, σ ) and (Hom(W,U), δ) are representations of the Z2-graded Hopf
algebra A,

(2) T ∈ IA(V, Hom(W,U)), i.e. ∀a ∈ A T ◦ π(a) = (−1)|a||T|δ(a) ◦ T,
(3) Ť ∈ Hom(V ⊗ W,U)) and Ť (v ⊗ w) ≡ T(v) · w ∀v ∈ V,w ∈ W .

Then

(a) Ť ∈ IA(V ⊗ W,U)), i.e. ∀a ∈ A Ť ◦ [(π ⊗ ρ)�(a)] = (−1)|a||Ť|σ(a) ◦ Ť.
(b) |T| =|Ť|
Proof. Let us prove (a). The action δ of representation (Hom(W,U), δ) is given in example 3.
We rewrite condition (2) for T in the form

T[π(a) · v] · w = (−1)|a||T|
{∑

i

(−1)|a
(2)
i ||T(v)|σ

(
a

(1)
i

) ◦ T(v) ◦ ρ
(
S
(
a

(2)
i

))} · w (2.14)

for any a ∈ A, v ∈ V,w ∈ W . We have to prove that from this follows condition (a) for Ť
which can be written as follows∑

i

(−1)|a
(2)
i ||v|T

[
π

(
a1

i

) · v
] · (

ρ
(
a

(2)
i

) · w
) = (−1)|a||T|σ(a)[T(v) · w] (2.15)

for any a ∈ A, v ∈ V,w ∈ W . Applying condition (2.14 ) for a = a1
i to the LHS of the above

equation we get∑
i

(−1)|a
(2)
i ||v|T

[
π

(
a1

i

) · v
] · (

ρ
(
a

(2)
i

) · w
) =

∑
ij

(−1)|a
(2)
i ||v|(−1)|a

1
i ||T|

×(−1)|(a
(1)
i )

(2)
j ||T(v)|σ

[(
a

(1)
i

)(1)

j

] ◦ T(v) ◦ ρ
[
S
(
a

(1)
i

)(2)

j

(
a

(2)
i

)] · w.

In the notation (2.12), (2.13) it takes the form∑
i

(−1)|a
(2)
i ||v|T

[
π

(
a1

i

) · v
] · (

ρ
(
a

(2)
i

) · w
) =

∑
ij

(−1)|a
(2)
i ||v|(−1)|a

1
i ||T|(−1)|(a

(1)
i )

(2)
j ||T(v)|

×(−1)|(a
(1)
i )

(1)
j ||T(v)|{mρ

σ ◦ (σ ⊗ ρT(v)) · ((
a

(1)
i

)(1)

j
⊗ S(a

(1)
i

)(2)

j
a

(2)
i

)} · w.

Simpifying the phase and using the identity (2.1) we get∑
i

(−1)|a
(2)
i ||v|T

[
π

(
a1

i

) · v
] · (

ρ
(
a

(2)
i

) · w
) = (−1)|a||v|{mρ

σ ◦ (σ ⊗ ρT(v)) · (a ⊗ 1)
} · w

= (−1)|a||v|(−1)|a||T(v)|σ(a)[T(v) · w]

= (−1)|a||v|+|a||T(v)|σ(a)[T(v) · w]

which is the RHS of equation (2.15). Statement (b) can be proved considering the degrees of
the values of T and Ť on homogeneous arguments. �
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3. Wigner–Eckart theorem for the quantum superalgebra Uq[osp(1 | 2)]

In this section we will consider the quantum superalgebra Uq[osp(1 | 2)] and its graded
representations. A representation of the quantum superalgebra Uq[osp(1 | 2)] in the graded
linear space V will be denoted by π

π : Uq[osp(1 | 2)] → Hom(V , V ).

The finite dimensional irreducible representations of Uq[osp(1 | 2)] were first studied in [15].
They have the same structure as in case of the nondeformed superalgebra osp(1 | 2) and for
this superalgebra every finite dimensional irreducible representation is equivalent to a grade
star representation [16]. It has been shown in [2] that any finite dimensional grade star
representation of Uq[osp(1 | 2)] is characterized by four parameters: the highest weight l
(a non-negative integer), the parity λ = 0, 1 of the highest weight vector in the representation
space and by ϕ,ψ = 0, 1, the signature parameters of the Hermitian in the representation space
V . The parity λ and the signature ϕ define the class ε = 0, 1 of the grade star representation
by

ε = λ + ϕ + 1, mod(2).

For simplicity we will write (V l(λ), πl) instead of
(
V l(λ), πlε

ϕψ

)
The representation space

V l(λ) is a graded vector space of dimension 2l + 1 with basis el
m(λ) where −l � m � l. The

parity of the basis vectors el
m(λ) is determined by values of l, m and λ∣∣el

m(λ)
∣∣ = l − m + λ mod(2).

The vectors el
m(λ) are pseudo-orthogonal with respect to the Hermitian form in V and their

normalization is determined by the signature parameters ϕ,ψ(
el
m(λ), el′

m′(λ)
) = (−1)ϕ(l−m)+ψδmm′ ,

where ( , ) denotes the Hermitian form in the representation space V l(λ). The operators πl(v±)

and πl(H) act on the basis el
m(λ) in the following way

πl(v+) · el
m = (−1)(l−m)([l − m][l + m + 1]γ )

1
2 el

m+1 (3.1)

πl(v−) · el
m = ([l + m][l − m + 1]γ )

1
2 el

m−1 (3.2)

πl(H) · el
m = m

2
el
m (3.3)

where [n] = q
− n

2 −(−1)nq
n
2

q
− 1

2 −q
1
2

and γ = ch( η

4 )
sh(2η)

. Note that the action of the operators πl(v±) and

πl(H) does not depend on the parameters λ, ϕ,ψ .
The tensor product of two irreducible representations (V l1(λ1), π

l1) and (V l2(λ2), π
l2) is

completely and simply reducible, i.e. we have

V l1(λ1) ⊗ V l2(λ2) = ⊕l1+l2
l=|l1−l2|V

l(λ).

By definition the Clebsch–Gordan coefficients (C-Gc) (l1m1λ1, l2m2λ2 | lmλ)q relate the
standard basis el1

m1
(λ1) ⊗ el2

m2
(λ2) of tensor product V l1(λ1) ⊗ V l2(λ2) with the reduced basis

el
m(l1, l2, λ) in the following way

el
m(l1, l2, λ) =

∑
m1m2

(l1m1λ1, l2m2λ2 | lmλ)qe
l1
m1

(λ1) ⊗ el2
m2

(λ2)

or equivalently

(−1)(l1−m1)(l2−m2)el1
m1

(λ1) ⊗ el2
m2

(λ2) =
∑
lm

(−1)(l−m)L(l1m1λ1, l2m2λ2 | lmλ)qe
l
m(l1, l2, λ)
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where m1 + m2 = m,L = l1 + l2 + l and l is an integer satisfying the condition

|l1 − l2| � l � l1 + l2.

In the following, in order to get the Wigner–Eckart theorem in a conventional form we will
use modified C-Gc [l1m1λ1, l2m2λ2 | lmλ]q which are related to (l1m1λ1, l2m2λ2 | lmλ)q by

[l1m1λ1, l2m2λ2 | lmλ]q = (−1)(l1−m1)(l2−m2)(−1)(l−m)L(l1m1λ1, l2m2λ2 | lmλ)q.

In terms of the modified C-Gc the relation between the standard and the reduced basis in
V l1(λ1) ⊗ V l2(λ2) looks like

(−1)(l−m)Lel
m(l1, l2, λ) =

∑
m1m2

(−1)(l1−m1)(l2−m2)[l1m1λ1, l2m2λ2 | lmλ]qe
l1
m1

(λ1) ⊗ el2
m2

(λ2)

or equivalently

el1
m1

(λ1) ⊗ el2
m2

(λ2) =
∑
lm

[l1m1λ1, l2m2λ2 | lmλ]qe
l
m(l1, l2, λ). (3.4)

We have also for any l, m in this decomposition∣∣el1
m1

(λ1) ⊗ el2
m2

(λ2)
∣∣ = ∣∣el

m(l1, l2, λ)
∣∣. (3.5)

In the classical theory of Racah–Wigner calculus, a very important role is played by the C-Gc
(jm, jn | 00), which defines an invariant metric. In the case of the quantum superalgebra
Uq[osp(1 | 2)], the corresponding coefficient also defines an invariant metric. It has the form

Cl
mn(λ) =

√
[2l + 1](lmλ, ln λ | 00)q = (−1)(l−m)λ(−1)(l−m)(l−m−1)/2qm/2δm,−n. (3.6)

For more details on the irreducible grade star representations and properties of C-Gc, see [2].
In the case of the irreducible finite dimensional representations of the quantum

superalgebra Uq[osp(1 | 2)] the Schur lemma has the following form

Lemma 2. Let (V l1(λ1), π
l1) and (V l2(λ2), π

l2) be irreducible finite dimensional
representations of Uq[osp(1 | 2)] and let f ∈ IUq [osp(1 | 2)](V

l1(λ1), V
l2(λ2)), i.e. for any

a ∈ Uq[osp(1 | 2)], x ∈ V l1(λ1)

f (πl1(a) · x) = (−1)|f ||a|πl2(a)f (x), (3.7)

then f = α idV l1 (λ1)(α ∈ R) if l1 = l2 and λ1 = λ2, or f = 0 if l1 �= l2 or λ1 �= λ2.

Proof. Let us consider the properties of the vector

y = f
(
e
l1
l1
(λ1)

) ∈ V l2(λ2).

Using equation (3.7) we get

πl2(H) · y = l1

2
y;πl2(v+) · y = 0

so either y ∈ V l2(λ2) is the highest weight vector of weight l1 in V l2(λ2) or f = 0, i.e. either
l1 = l2 or f = 0. Assume that l1 = l2 and λ1, λ2 arbitrary. Then from the above it follows
that we have

f
(
el1
m1

(λ1)
) = αel1

m1
(λ2) (3.8)

and |f | = 1 if λ1 + λ2 = 1 or |f | = 0 if λ1 + λ2 = 0 mod(2). Acting on both sides of the
above equation by T l1(v+) we get

(−1)(l1−m1)([l1 − m1][l1 + m1 + 1]γ )
1
2 el

m1+1(λ2)

= (−1)|f |(−1)(l1−m1)([l1 − m1][l1 + m1 + 1]γ )
1
2 el

m1+1(λ2)

so f = 0 if λ1 + λ2 = 1. �
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We will need later on the following proposition which is a consequence of the Schur
lemma

Proposition 2. Let (V l1(λ1), π
l1), (V l2(λ2), π

l2) and (V l3(λ3), π
l3) be irreducible finite

dimensional representations of Uq[osp(1 | 2)] with bases respectively
{
el2
m1

(λ1)
}
,
{
el1
m2

(λ2)
}
,{

el3
m3

(λ3)
}

and let f ∈ IUq [osp(1 | 2)](V
l1(λ1) ⊗ V l2(λ2)), V

l3(λ3)) where |l1 − l2| � l3 � l1 + l2.
Then

f
(
el1
m1

(λ1) ⊗ el2
m2

(λ2)
) = αl3

∑
m3

[l1m1λ1, l2m2λ2 | l3m3λ3]qe
l3
m3

(l1, l2, λ3). (3.9)

for any eli
mi

(λi) ∈ V li (λi), i = 1, 2 and f ∈ (
IUq [osp(1 | 2)](V

l1(λ1) ⊗ V l2(λ2)), V
l3(λ3)

)
0, i.e.

f is an homomorphism.

Proof. From Clebsch–Gordan decomposition we have

el1
m1

(λ1) ⊗ el2
m2

(λ2) =
∑
lm

[l1m1λ1, l2m2λ2 | lmλ]qe
l
m(l1, l2, λ) (3.10)

and for any |l1 − l2| � l � l1 + l2 the linear mapping fl = f | V l(λ) : V l(λ) → V l3(λ3)

is an intertwiner of representations V l(λ) and V l3(λ3), i.e. fl ∈ IUq [osp(1 | 2)](V
l(λ), V l3(λ3)).

Therefore we have from the Schur lemma

fl = αl idV l(λ)δll3δλλ3 .

Taking into account that f = ⊕lfl we get from the Clebsch–Gordan decomposition (3.10)
equation (3.9) and it is clear that αl do not depend on m1m2,m. The fact that f ∈(
IUq [osp(1 | 2)](V

l1(λ1) ⊗ V l2(λ2)), V
l3(λ3)

)
0 follows from relation (3.5). �

Now we can formulate the Wigner–Eckart theorem for irreducible tensor operators for
quantum superalgebra Uq[osp(1 | 2)].

Theorem 1. If T ∈ IUq [osp(1 | 2)](V
l1(λ1), Hom(V l2(λ2), V

l3(λ3))) is an irreducible tensor
operator. Then

(1) the matrix elements of its components T
(
el1
m1

(λ1)
)

are proportional to the modified
Clebsch–Gordan coefficients i.e.[

T
(
el1
m1

(λ1)
)]

m3m2
= α[l1m1λ1, l2m2λ2 | l3m3λ3]q

where α is a real number called a reduced matrix element which does not depend on
mi, i = 1, 2, 3.

(2) T is an even intertwiner, i.e. T ∈ HomUq [osp(1 | 2)](V
l1(λ1), Hom(V l2(λ2), V

l3(λ3)))

Proof. From lemma 1 we know that linear mapping Ť ∈ Hom(V l1(λ1) ⊗ V l2(λ2), V
l3(λ3))),

|l1 − l2| � l3 � l1 + l2

Ť
(
el1
m1

(λ1) ⊗ el2
m2

(λ2)
) = T

(
el1
m1

(λ1)
) · el2

m2
(λ2)

is an intertwiner of representations and |T| =|Ť|. Then from proposition 2 we get

Ť
(
el1
m1

(λ1) ⊗ el2
m2

(λ2)
) = T

(
el1
m1

(λ1)
) · el2

m2
(λ2)

= α
∑
m3

[l1m1λ1, l2m2λ2 | l3m3λ3]qe
l3
m3

(l1, l2, λ3)

where α do not depend on mi, i = 1, 2, 3 and Ť is even. On the other hand, the matrix of the
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operator T
(
el1
m1

(λ1)
)

is defined by the equation

T
(
el1
m1

(λ1)
) · el2

m2
(λ2) = [

T
(
el1
m1

(λ1)
)]

m3m2
· el3

m3
(λ3)

Comparing the last two equations we get the statement of the theorem. �

Thus for the quantum superalgebra Uq[osp(1 | 2)] the Wigner–Eckart theorem has exactly
the same form as in the classical case su(2) and deformed case Uq[su(2)]. It is quite a
remarkable result because in general all formulae in Racah–Wigner calculus for the quantum
superalgebra Uq[osp(1 | 2)], have a form similar to corresponding formulae in Racah–Wigner
calculus for su(2) and Uq[su(2)], but they differ from the latter by sometimes complicated
phases [2, 3]. We have avoided the appearance of the non conventional phase in the Wigner–
Eckart theorem using the modified C-Gc.

The irreducible tensor operator T for Uq[osp(1 | 2)] is even so we have
∣∣T(

el
m(λ)

)∣∣ =∣∣el
m(λ)

∣∣ = l − m + λ mod(2) and we may introduce notation T
(
el
m(λ)

) ≡ T l
m(λ). Let us write

the defining relations (2.9)–(2.11) for the components of the irreducible tensor operator T l
m(λ)

(−1)l−m([l − m][l + m + 1]γ )
1
2 T l

m+1(λ) = πl3(v+) ◦ T l
m(λ) ◦ πl2(q−H )

− (−1)l−m+λq
1
2 πl3(q−H ) ◦ T l

m(λ) ◦ πl2(v+)

([l + m][l − m + 1]γ )
1
2 T l

m−1(λ) = πl3(v−) ◦ T l
m(λ) ◦ πl2(q−H )

− (−1)l−m+λq− 1
2 πl3(q−H ) ◦ T l

m(λ) ◦ πl2(v−)

m

2
T l

m(λ) = πl3(H) ◦ T l
m(λ) − T l

m(λ) ◦ πl2(H).

The above formulae are very similar to defining relations satisfied by the components of the
irreducible tensor operator for the Hopf algebra Uq[su(2)] [6, 7, 12, 13]. The difference
is only in the phase factor and the definition of the symbol [n]. In the limit q → 1, for
l − m = 0 mod(2) we get

1

2
(l − m)

1
2 T l

m+1(λ) = πl3(v+) ◦ T l
m(λ) − (−1)λT l

m(λ) ◦ πl2(v+)

1

2
(l + m)

1
2 T l

m−1(λ) = πl3(v−) ◦ T l
m1

(λ) − (−1)λT l
m(λ) ◦ πl2(v−)

m

2
T l

m(λ) = πl3(H) ◦ T l
m(λ) − T l

m(λ) ◦ πl2(H)

and for l − m = 1 mod(2) we have

−1

2
(l + m + 1)

1
2 T l

m+1(λ) = πl3(v+) ◦ T l
m(λ) − (−1)λT l

m(λ) ◦ πl2(v+)

1

2
(l − m + 1)

1
2 T l

m−1(λ) = πl3(v−) ◦ T l
m(λ) − (−1)λT l

m(λ) ◦ πl2(v−)

m

2
T l

m(λ) = πl3(H) ◦ T l
m(λ1) − T l

m(λ1) ◦ πl2(H).

The above equations can be interpreted as defining relations for the components of the
irreducible tensor operator for the Lie superalgebra osp(1 | 2). It is known that the Lie
algebra sl(2) generated by elements H,L± = ±2[v±, v±]+ is included in the superalgebra
osp(1 | 2) and we have

[H,L±] = ±L±; [l+, L−] = 2H.

Using the defining relations (2.8) for a = H,L± we get in the limit q → 1 the following
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equations

−1

4

√
(l − m)(l + m + 2)T l

m+2(λ1) = πl3(L+) ◦ T l
m(λ1) − T l

m(λ1) ◦ πl2(L+)

−1

4

√
(l + m)(l − m + 2)T l

m−2(λ1) = πl3(L−) ◦ T l
m(λ1) − T l

m(λ1) ◦ πl2(L−)

m

2
T l

m(λ) = πl3(H) ◦ T l
m(λ) − T l

m(λ) ◦ πl2(H)

for l − m = 0 mod(2) and

−1

4

√
(l − m − 1)(l + m + 1)T l

m+2(λ) = πl3(L+) ◦ T l
m(λ1) − T l

m(λ1) ◦ πl2(L+)

−1

4

√
(l + m − 1)(l − m + 1)T l

m−2(λ) = πl3(L−) ◦ T l
m(λ) − T l

m(λ) ◦ πl2(L−)

m

2
T l

m(λ) = πl3(H) ◦ T l
m(λ) − T l

m(λ) ◦ πl2(H)

where l − m = 1 mod(2).
These formulae are classical Racah definitions for components of the irreducible tensor

operator for the Lie algebra sl(2). Thus in the formal limit Uq[osp(1 | 2)] → osp(1 | 2)

the set of the components T l
m(λ) of irreducible tensor operator T splits into two sets{

T l
m(λ) : l − m = 0 mod(2)

}
and

{
T l

m(λ) : l − m = 1 mod(2)
}

which are sets of components
of irreducible tensor operators T l and T l−1 for the Lie subalgebra sl(2). Note that the sets{
T l

m(λ) : l − m = 0 mod(2)
}

and
{
T l

m(λ) : l − m = 1 mod(2)
}

differ in degree because we
have

∣∣T(
el
m(λ)

)∣∣ = l − m + λ mod(2). This splitting is not surprising because the components
of an irreducible tensor operator have the same transformation rule as the basis vectors of the
irreducible representation. On the other hand, it is known that, with respect to sl(2), a graded
representation space V l of the irreducible representation of osp(1 | 2) is a direct sum of two
subspaces

V l = Dl(λ) ⊕ Dl−1(λ + 1)

where Dl(λ) and Dl−1(λ + 1) are the irreducible representation spaces of the Lie algebra
sl(2). Thus our general definition of tensor operators for Z2-graded Hopf in the case of
Uq[osp(1 | 2)], in the limit q → 1 leads to the classical definition of tensor operators for the
Lie algebra sl(2) ⊂ osp(1 | 2).

From the Wigner–Eckart theorem it follows that it is sufficient to know one particular
value of the matrix element

[
T l

m(λ)
]
pq

of tensor operator component T l
m(λ) to determine the

reduced matrix element α and then to express all remaining matrix elements
[
T l

m(λ)
]
pq

in
terms of Clebsch–Gordan coefficients. It will be applied in the next section.

4. Applications of Wigner–Eckart theorem

In this section we will consider tensor operators for the quantum superalgebra Uq[osp(1 | 2)].
First we construct in Uq[osp(1 | 2)] irreducible representations of highest weight l (even
natural number) which will be irreducible subrepresentations of the adjoint representation
(Uq[osp(1 | 2)], ad).

Proposition 3. Let us define for any even natural l

t lm =
(

[l + m]!

[2l]![l − m]!γ l−m

) 1
2

advl−m
− · vl

+q
lH
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where −l � m � l. Then

ade · t lm = (−1)l−m(([l − m][l + m + 1]γ )
1
2 t lm+1 (4.1)

adf · t lm = ([l + m][l − m + 1]γ )
1
2 t lm−1 (4.2)

adH · t lm = m

2
t lm. (4.3)

We have also
∣∣t ll ∣∣ = λ = l = 0 mod(2) and

∣∣t lm∣∣ = m mod(2). Therefore the vectors t lm form a
basis of irreducible representation (Ul, ad) of Uq[osp(1 | 2)] where Ul ⊂ Uq[osp(1 | 2)].

Proof. A direct calculation shows that t ll is a highest weight vector of weight l
2 . Applying the

standard procedure of construction of the irreducible highest weight modul of Uq[osp(1 | 2)]
gives the result. �

Corollary 1. The elements t lm ∈ Uq[osp(1 | 2)] are components of the tensor operator
Ll ∈ HomUq [osp(1 | 2)]

(
Ul

ad, Hom(Uq[osp(1 | 2)]L,Uq[osp(1 | 2)]L)
)
.

Proof. The left regular action L : Uq[osp(1 | 2)]ad → Hom(Uq[osp(1 | 2)]L,Uq[osp(1 | 2)]L)

is a tensor operator (examples 7, 9) and Ul is an irreducible subrepresentation of Uq [osp(1 | 2)].
So it is obvious that Ll : Ul

ad → Hom(Uq[osp(1 | 2)]L,Uq[osp(1 | 2)]L) is also a tensor
operator. Equations (4.1)–(4.3) show that the components t lm of Ll satisfy the defining
equation (2.8). �

As an application of the Wigner–Eckart theorem we will calculate the matrices πj
(
t lm

)
pn

≡[
t lm(j)

]
pn

of the basis vectors t lm of (Ul, ad) in the representation (V j (λ), πj ). Using the

defining commutation relations for Uq[osp(1 | 2)] one can show that t lm are rather complicated
combinations of elements H, v±

t lm =
(

[l + m]!

[2l]![l − m]!

) 1
2
l−m∑

k

N∑
p=0

(−1)
k(k+1)

2 (−1)
p(p−1)

2 q− k
2 (l+m+1) [l]![l − m]!

[p]![l − p]![k − p]![l − m − k]!

× γ pvl−m
− vl

+
[4H − k + l]!

[4H − k + l − p]!
qmH . (4.4)

where N = min(l, k) and we use a symbolic notation

[H + m + p]!

[H + m]!
≡ [H + m + p] · · · [H + m + 1].

So a direct calculation of πj
(
t lm

)
pn

using matrices πj (v±)mn, π
j (H)mn seems to be difficult

in a general case. However, due to the Wigner–Eckart theorem it is not necessary to do it. In
fact we have

Theorem 2. The basis vectors t lm of (Ul, ad) have the following matrix form in the irreducible
representation (V j (λ), πj )

πj
(
t lp

)
mn

= α[lp0, jnλ | jmλ]q

where

α = (−1)
1
2 l(l+1)q− 1

2 l(l+1
)[l]!

(
[2j + l + 1]!

[2l]![2j − l]![2j + 1]!
γ l

) 1
2

is a reduced matrix element of the irreducible tensor operator πj : Ul → Hom(V j (λ), V j (λ)).
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Proof. The representation πj : Uq[osp(1 | 2)] → Hom(V j (λ), V j (λ)) is itself a tensor
operator (examples 6, 8). Because Ul is an irreducible subrepresentation of Uq[osp(1 | 2)]
then πj : Ul → Hom(V j (λ), V j (λ)) is an irreducible tensor operator. Thus according to the
Wigner–Eckart theorem we have the following expression for matrix elements of components
πj

(
t lp

)
of πj

πj
(
t lp

)
mn

= α[lp0, jnλ | jmλ]q
and in particular

πj
(
t ll
)
mn

= α[ll0, jnλ | jmλ]q . (4.5)

Now on one hand from (3.1)–(3.3) we have

πj
(
t ll
)
mn

= (−1)
1
2 l(l+1)+l(j−m+l)

(
[j − m + l]![j + m]!

[j + m − l]![j − m]!
γ l

) 1
2

q
1
2 l(m−l)δmn+l

and on the other we have [2]

[ll0, jnλ | jmλ]q = q− n
2 q

1
4 (2j−l)(l+1)− 1

2 (j−m)(l+1)

×
(

[2j + 1]
[2l]![2j − l]![j + m]![j − m + l]!

[2j + l + 1]![l]![l]![j − m]![j + m − l]!

) 1
2

δmn+l .

After substitution of the last two equations to equation (4.5) we get the value of α. �
At the end of this paper we give a method of constructing some elements of the centre of

Uq[osp(1 | 2)] by use of the particular C-Gc Cl
mn(λ) (3.6) and the elements t lp of Uq[osp(1 | 2)].

It is known that Cl
mn(λ) couple two irreducible representations (V j , πj ) and (V i, πi) to a one-

dimensional trivial representation. Therefore for any two irreducible representations (Uj , ad)

and (Ui, ad) with bases
{
t
j
m

}
and

{
t in

}
, the following elements Cj of Uq[osp(1 | 2)]

Cj=
∑
mn

(jmλj , inλi | 00)q t
j
mt in

form the one-dimensional trivial representation (Cj , ε) described in example 5. It means
that Cj ∈ Uq[osp(1 | 2)]ε and consequently, from proposition 1, belongs to the centre of
Uq[osp(1 | 2)].
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